bill2watt.utils package

Submodules

bill2watt.utils.check_sizes module

This module contains functions for checking the size of various arrays.

Functions

check_y(y)

Check the size of y ndarray and return y.

check_x(x)

Check the size of x ndarray and return x.

check_nd(nd)

Check the size of nd ndarray and return nd.

Notes

Info

Author: G. Lorenti Email: gianmarco.lorenti@polito

bill2watt.utils.check_sizes.check_y(y)

Check the size of y ndarray.

Parameters

yndarray

Typical load profile to be checked.

Returns

ndarray

The input ‘y’.

Raises

AssertionError

If the size of ‘y’ does not comply with the requirements.

bill2watt.utils.check_sizes.check_x(x)

Check the size of x ndarray.

Parameters

xndarray

Energy consumption values to be checked.

Returns

ndarray

The input ‘x’.

Raises

AssertionError

If the size of ‘x’ does not comply with the requirements.

bill2watt.utils.check_sizes.check_nd(nd)

Check the size of nd ndarray.

Parameters

ndndarray

Number of days of each type to be checked.

Returns

ndarray

The input ‘nd’.

Raises

AssertionError

If the size of ‘nd’ does not comply with the requirements.

bill2watt.utils.eval_x module

bill2watt.utils.normalizing module

Info

Author: G. Lorenti Email: gianmarco.lorenti@polito.it

bill2watt.utils.normalizing.check_array(x)

Validate the input array and return a reshaped version if necessary.

Parameters

xndarray

The input array to validate.

Returns

ndarray

The reshaped input array.

bool

Whether the input array is mono-dimensional or not.

Raises

AssertionError

If the input is not a 1D or 2D NumPy array.

class bill2watt.utils.normalizing.XRowNormalizer

Bases: object

Row-wise normalizer for X data.

This class provides methods to normalize and denormalize row-wise data based on the sum of each row.

Parameters

Attributes

x_sum (property)ndarray or None

Normalization values in the X data.

n (property)int

Number of points in the fitting data.

Methods

fit(x)

Fit the normalizer to the given X data.

transform(x)

Normalize the input X data.

inverse_transform(x_norm)

Denormalize the normalized X data.

fit_transform(x)

Fit the normalizer to the given X data and normalize it.

property x_sum

Get the normalization values of the X data.

Returns

ndarray or None

Values of self._x_sum

property n

Get the number of rows in the X data.

Returns

int or None

The number of rows in the X data.

fit(x)

Fit the normalizer to the given X data.

Parameters

xndarray

The input X data.

Raises

AssertionError

If the input ‘x’ does not meet the requirements. See function ‘check_array’ for further details.

transform(x)

Normalize the input X data.

Parameters

xndarray

The input X data.

Returns

ndarray

The normalized X data.

Raises

AssertionError

If the input ‘x’ does not meet the requirements. See function ‘check_array’ for further details. If the length of ‘x’ does not match the number of rows in the X data.

inverse_transform(x_norm)

Denormalize the normalized X data.

Parameters

x_normndarray

The normalized X data.

Returns

ndarray

The denormalized X data.

Raises

AssertionError

If the input ‘x_norm’ does not meet the requirements. See function ‘check_array’ for further details. If the length of ‘x’ does not match the number of rows in the X data.

fit_transform(x)

Fit the normalizer to the given X data and normalize it.

Parameters

xndarray

The input X data.

Returns

ndarray

The normalized X data.

Notes

See ‘fit’ and ‘transform’ methods for further details.

class bill2watt.utils.normalizing.YRowNormalizer

Bases: XRowNormalizer

Row-wise normalizer for Y data.

This class provides methods to normalize and denormalize row-wise data based on the sum of each row, using the sum of X data for normalization.

Attributes

x_sum (property)ndarray or None

Normalization values in the X data.

n (property)int

Number of points in the fitting data.

Methods

transform(y)

Normalize the input Y data.

inverse_transform(y_norm)

Denormalize the normalized Y data.

fit_transform(y)

Fit the normalizer to the given Y data and normalize it.

transform(y)

Normalize the input Y data.

Parameters

yndarray

The input Y data.

Returns

ndarray

The normalized Y data.

Raises

AssertionError

If the input ‘y’ does not meet the requirements. See function ‘check_array’ for further details. If the length of ‘y’ does not match the number of rows in the Y data.

inverse_transform(y_norm)

Denormalize the normalized Y data.

Parameters

y_normndarray

The normalized Y data.

Returns

ndarray

The denormalized Y data.

Raises

AssertionError

If the input ‘y_norm’ does not meet the requirements. See function ‘check_array’ for further details. If the length of ‘y’ does not match the number of rows in the Y data.

fit_transform(x, y)

Fit the normalizer to the given X data and normalize the Y data.

Parameters

xndarray

The input X data.

yndarray

The input Y data.

Returns

ndarray

The normalized Y data.

Notes

See ‘fit’ and ‘transform’ methods for further details.

Module contents